Abstract 3D-carbon fiber felts reinforced ceramic-based composites are considered as valuable structural materials due to their excellent high-temperature mechanical performance, low density and low thermal conductivity. In order to enhance… Click to show full abstract
Abstract 3D-carbon fiber felts reinforced ceramic-based composites are considered as valuable structural materials due to their excellent high-temperature mechanical performance, low density and low thermal conductivity. In order to enhance the mechanical properties of the carbon fiber reinforced silicon oxycarbide (SiOC) ceramics, in-situ growth of SiCnws on the surface of carbon fiber via a simple precursor impregnation and pyrolysis method was proposed. As a result, nanoscale SiC nanowires and microscale carbon fiber felts reinforced SiOC ceramics were successfully fabricated. The results showed that the compressive strength of the composite increased by 369% and 173% after two PIP process in x/y and z directions, respectively. The enhanced compressive strength could be ascribed to the brittle fracture of SiCnws and CFs, and crack deflection.
               
Click one of the above tabs to view related content.