LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Stability and convergence of computational eulerian two-fluid model for a bubble plume

Photo by thinkmagically from unsplash

Abstract The Eulerian two-fluid model (TFM) of Ishii (1975) is used to analyze the dynamics of an air-water bubble plume. The focus is on the effect of the linear stability,… Click to show full abstract

Abstract The Eulerian two-fluid model (TFM) of Ishii (1975) is used to analyze the dynamics of an air-water bubble plume. The focus is on the effect of the linear stability, in particular the ill-posed condition, on the nonlinear stability of the TFM. It is well-known that the TFM for bubbly flows is ill-posed as an initial value problem in the absence of short wavelength physics for non-zero slip velocities. It is also known that the 1-D TFM can be made conditionally well-posed (for void fraction 26%). Physically, as the void fraction increases, the bubbles tend to undergo collisions, and the momentum transfer due to this mechanism may become significant. In the current study a bubble collision model adapted from the work of Alajbegovic et al. (1999) is used for CFD TFM calculations for bubbly flows using an LES approach. It is shown by linear stability analysis and non-linear simulations that the collision term makes the TFM unconditionally well-posed and stable in a non-linear sense. Secondly, computational grid convergence tests are performed with the well-posed CFD TFM. It is observed that the coarse grid solution exhibits an unphysical limit cycle behavior that is inconsistent with turbulence, but as the mesh is refined the solution becomes chaotic. CFD TFM simulations commonly employ a grid restriction to avoid ill-posed behavior. However, this is unnecessary with a well-posed Eulerian TFM derived from first principles using the continuum assumption. Once the restriction is removed by adding appropriate short-wavelength physics, i.e., interfacial pressure difference and collision mechanism, convergence may be approached in a statistical sense consistent with a turbulent CFD model.

Keywords: tfm; eulerian two; model; two fluid; stability; convergence

Journal Title: Chemical Engineering Science
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.