LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Maximum Entropy Prediction of Non-Equilibrium Stationary Distributions for Stochastic Reaction Networks with Oscillatory Dynamics.

Photo from wikipedia

Many chemical reaction networks in biological systems present complex oscillatory dynamics. In systems such as regulatory gene networks, cell cycle, and enzymatic processes, the number of molecules involved is often… Click to show full abstract

Many chemical reaction networks in biological systems present complex oscillatory dynamics. In systems such as regulatory gene networks, cell cycle, and enzymatic processes, the number of molecules involved is often far from the thermodynamic limit. Although stochastic models based on the probabilistic approach of the Chemical Master Equation (CME) have been proposed, studies in the literature have been limited by the challenges of solving the CME and the lack of computational power to perform large-scale stochastic simulations. In this paper, we show that the infinite set of stationary moment equations describing the stochastic Brusselator and Schnakenberg oscillatory reactions networks can be truncated and solved using maximization of the entropy of the distributions. The results from our numerical experiments compare with the distributions obtained from well-established kinetic Monte Carlo methods and suggest that the accuracy of the prediction increases exponentially with the closure order chosen for the system. We conclude that maximum entropy models can be used as an efficient closure scheme alternative for moment equations to predict the non-equilibrium stationary distributions of stochastic chemical reactions with oscillatory dynamics. This prediction is accomplished without any prior knowledge of the system dynamics and without imposing any biased assumptions on the mathematical relations among species involved.

Keywords: reaction networks; maximum entropy; non equilibrium; equilibrium stationary; prediction; oscillatory dynamics

Journal Title: Chemical engineering science
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.