LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Cubic equations of state extended to confined fluids: New mixing rules and extension to spherical pores

Photo by michael75 from unsplash

Abstract The thermodynamic behavior of fluids confined in nanopores is highly influenced by the interaction between fluid molecules and pore walls. The most accurate approaches for modeling confined fluids are… Click to show full abstract

Abstract The thermodynamic behavior of fluids confined in nanopores is highly influenced by the interaction between fluid molecules and pore walls. The most accurate approaches for modeling confined fluids are too computationally demanding for practical engineering requirements, such as process simulation. Thus, several efforts have been made to develop analytical equations of state suitable for confined fluids. The scope of this work consists of a modification to our previous modeling of fluid confinement in cylindrical pores based on cubic equations of state. By using new, more explicit mixing rules, a more consistent description of confined mixtures is obtained. Additionally, this modeling approach is extended to spherical pores. The proposed models displayed good predictive performance for the adsorption of binary and ternary mixtures, based on pure fluid adsorption data only, with an improvement relative to the previous modeling. It is shown that the adopted pore geometry can significantly affect the model performance.

Keywords: cubic equations; spherical pores; equations state; confined fluids; mixing rules

Journal Title: Chemical Engineering Science
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.