LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Anode surface modification regulates biofilm community population and the performance of micro-MFC based biochemical oxygen demand sensor

Photo from wikipedia

Abstract The anode surface is known to play an important role in the microbial growth and in mediating electron transfer between electroactive bacteria and the electrodes in power generating microbial… Click to show full abstract

Abstract The anode surface is known to play an important role in the microbial growth and in mediating electron transfer between electroactive bacteria and the electrodes in power generating microbial fuel cells (MFCs). However, the effect of the anode surface and its modification on MFC-based biosensor performance has not been studied previously. In this study, our results show that the surface modification influences certain aspect of the biosensor performance. Plasma treatment makes the carbon cloth electrode hydrophilic with contact angle of 82 ± 5° from that of 139 ± 3° without treatment which consequently increases the amount of biofilm and produces higher current generation. Carbon nanotube (CNT) treatment doesn’t increase the amount of biofilm but significantly changes its electroactive microorganism composition from 2.3% to 17.3% that improves current generation. Interestingly, the sensitivity of the MFC sensor was not improved by either of these treatments. These findings would be important for the optimized design and manufacturing of biosensing MFCs.

Keywords: anode surface; performance; mfc; surface modification

Journal Title: Chemical Engineering Science
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.