LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The Hairpin Form of r(G4C2)exp in c9ALS/FTD Is Repeat-Associated Non-ATG Translated and a Target for Bioactive Small Molecules.

Photo by kostiantynvierkieiev from unsplash

The most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) is an expanded G4C2 repeat [(G4C2)exp] in C9ORF72. ALS/FTD-associated toxicity has been traced to the RNA… Click to show full abstract

The most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) is an expanded G4C2 repeat [(G4C2)exp] in C9ORF72. ALS/FTD-associated toxicity has been traced to the RNA transcribed from the repeat expansion [r(G4C2)exp], which sequesters RNA-binding proteins (RBPs) and undergoes repeat-associated non-ATG (RAN) translation to generate toxic dipeptide repeats. Using in vitro and cell-based assays, we identified a small molecule (4) that selectively bound r(G4C2)exp, prevented sequestration of an RBP, and inhibited RAN translation. Indeed, biophysical characterization showed that 4 selectively bound the hairpin form of r(G4C2)exp, and nuclear magnetic resonance spectroscopy studies and molecular dynamics simulations defined this molecular recognition event. Cellular imaging revealed that 4 localized to r(G4C2)exp cytoplasmic foci, the putative sites of RAN translation. Collectively, these studies highlight that the hairpin structure of r(G4C2)exp is a therapeutically relevant target and small molecules that bind it can ameliorate c9ALS/FTD-associated toxicity.

Keywords: associated non; g4c2 exp; g4c2; repeat associated

Journal Title: Cell chemical biology
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.