LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Chemical Screen Identifies Compounds Limiting the Toxicity of C9ORF72 Dipeptide Repeats.

Photo by _tommytexter from unsplash

The expansion of GGGGCC repeats within the first intron of C9ORF72 constitutes the most common cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Through repeat-associated non-ATG translation, these… Click to show full abstract

The expansion of GGGGCC repeats within the first intron of C9ORF72 constitutes the most common cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Through repeat-associated non-ATG translation, these expansions are translated into dipeptide repeats (DPRs), some of which accumulate at nucleoli and lead to cell death. We here performed a chemical screen to identify compounds reducing the toxicity of ALS-related poly(PR) peptides. Our screening identified sodium phenylbutyrate, currently in clinical trials, and BET Bromodomain inhibitors as modifiers of poly(PR) toxicity in cell lines and developing zebrafish embryos. Mechanistically, we show that BET Bromodomain inhibitors rescue the nucleolar stress induced by poly(PR) or actinomycin D, alleviating the effects of the DPR in nucleolus-related functions such as mRNA splicing or translation. Our work suggests that BET Bromodomain inhibitors might have beneficial effects in diseases linked to nucleolar stress such as ALS/FTD.

Keywords: bet bromodomain; toxicity; chemical screen; c9orf72; dipeptide repeats

Journal Title: Cell chemical biology
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.