LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Platinum-group element and gold enrichment in soils monitored by chromium stable isotopes during weathering of ultramafic rocks

Photo from wikipedia

Abstract Weathering of ultramafic rocks can lead to the formation of soil profiles with high contents of Fe, Ni, Co, platinum-group elements (PGE) and gold. Traditionally, these metal-rich soils are… Click to show full abstract

Abstract Weathering of ultramafic rocks can lead to the formation of soil profiles with high contents of Fe, Ni, Co, platinum-group elements (PGE) and gold. Traditionally, these metal-rich soils are known as “laterites” and are formed under tropical climates and stable tectonic conditions. However, little is known about their possible development in cold/humid regions, and the factors governing PGE and gold mobility and enrichment under these weathering conditions are poorly constrained. In this study, five soil profiles developed on serpentinized, chromite-bearing ultramafic rocks at La Cabana, located in the Coastal Range of south-central Chile (38° S) were studied by combining major and trace element geochemistry with chromium stable isotope data. The results show that the soils developed at La Cabana have higher PGE and Au contents than the parent serpentinite rock, with ∑PGE and Au reaching up to 160 ppb and 29 ppb in a limonitic soil horizon and clay saprolite, respectively. Most soil samples have slightly negative δ53/52CrSRM979 values, within a range of −0.089 ± 0.012‰ to −0.320 ± 0.013‰ (average of −0.178‰), and are in agreement with previous data reported for modern soils. A noteworthy relation between δ53/52Cr data and PGE + Au contents is observed in the studied soil horizons, where isotopically lighter values of δ53/52Cr match the higher contents of PGE and gold. These results show that pedogenetic processes operating at the cold and humid La Cabana area are capable of increasing the total PGE and Au contents of certain soil horizons. Such processes are complex and multivariate but are primarily modulated by chromite dissolution and the formation of secondary phases such as clay minerals and oxy-hydroxide phases in the soil. These findings provide evidence that important weathering and PGE + Au supergene accumulation are not only restricted to tropical latitudes, and that the chromium isotope system is a useful proxy to track surface redox process and noble metal enrichment during pedogenesis.

Keywords: enrichment; ultramafic rocks; weathering ultramafic; platinum group; pge; soil

Journal Title: Chemical Geology
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.