LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Asynchronous δ13Ccarb and δ13Corg records during the onset of the Mulde (Silurian) positive carbon isotope excursion from the Altajme core, Gotland, Sweden

Photo by usgs from unsplash

Abstract High-resolution paired analyses of δ13Ccarb and δ13Corg from a new drill core from Gotland, Sweden, demonstrate asynchronous positive change in the carbon isotope records during the onset of one… Click to show full abstract

Abstract High-resolution paired analyses of δ13Ccarb and δ13Corg from a new drill core from Gotland, Sweden, demonstrate asynchronous positive change in the carbon isotope records during the onset of one of the major Silurian biogeochemical events known as the Mulde Event or “Big Crisis”. The detailed carbon isotope record presented here provides Δ13C (the difference between δ13Ccarb and δ13Corg) and allows the calculation of changes in organic carbon burial (forg) throughout the late Wenlock. The paired data suggest a ~ 38% increase in forg during the peak of the positive δ13Ccarb excursion and the high-resolution record reveals several short-lived inflections in Δ13C that have not been previously identified. When combined with sedimentological and sequence stratigraphic data from multiple paleocontinents, the new data presented here provide strong evidence for a transient global decrease in CO2, in support of previous interpretations of regression and global cooling coinciding with the Mulde Extinction Event.

Keywords: carbon isotope; core gotland; 13ccarb 13corg; gotland sweden; carbon

Journal Title: Chemical Geology
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.