LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Robust ridge regression based on self-paced learning for multivariate calibration

Photo by thinkmagically from unsplash

Abstract In this paper, we propose a robust ridge regression model based on self-paced learning (RR-SPL) for the high-dimensional spectroscopic data. The proposed RR-SPL model consists of a weighted least-squares… Click to show full abstract

Abstract In this paper, we propose a robust ridge regression model based on self-paced learning (RR-SPL) for the high-dimensional spectroscopic data. The proposed RR-SPL model consists of a weighted least-squares loss term on all training samples, a self-paced regularizer on sample weights, and a smoothness penalty on the model parameter. Designating an explicit form of the self-paced regularizer, the weights that indicate the importance of training samples can be automatically optimized in an augmented ridge regression framework. By increasing the model age, more and more training samples from easy to hard are added into the training set to learn a mature model. As a result, the RR-SPL model can weaken the effect of outliers and obtain an accurate spectra-concentrate relation. Experimental results on simulated data sets and four real near-infrared (NIR) spectra data sets show the effectiveness of the proposed RR-SPL method in a wide range of specific prediction tasks with or without outliers.

Keywords: model; self paced; ridge regression

Journal Title: Chemometrics and Intelligent Laboratory Systems
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.