LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

1,3-Dinitrobenzene reductive degradation by alkaline ascorbic acid - Reaction mechanisms, degradation pathways and reagent optimization.

Photo from archive.org

Nitro-aromatic compounds (NACs) such as 1,3-dinitrobenzene (1,3-DNB) contain the nitrogroup (-NO2), in which the N with a +III oxidation state accepts electrons. Water soluble ascorbic acid (AsA) at elevated pH produces… Click to show full abstract

Nitro-aromatic compounds (NACs) such as 1,3-dinitrobenzene (1,3-DNB) contain the nitrogroup (-NO2), in which the N with a +III oxidation state accepts electrons. Water soluble ascorbic acid (AsA) at elevated pH produces electron transfer and governs the electron-donating pathway. The influence of the NaOH/AsA molar ratio on the degradation of 1,3-DNB was investigated. Using 0.21-2 M NaOH and 20-100 mM AsA, nearly complete 1,3-DNB removals (90-100%) were achieved within 0.5 h. On the basis of intermediates identified using GC/MS, the reduction pathways of 1,3-DNB can be categorized into step-by-step electron transfer, and condensation routes. A higher NaOH/AsA molar ratio would result in relatively higher AsA decomposition, promote the condensation route into the formation of azo- and azoxy-compounds, and ultimately reduce 1,3-DNB to 1,3-phenylenediamine. Contaminated soil flushing using 500 mM NaOH/100 mM AsA revealed that 1,3-DNB was completely degraded within 2 h. Based on these test results, the alkaline AsA treatment method is a potential remediation process for NACs contaminated soils.

Keywords: degradation; reductive degradation; ascorbic acid; dinitrobenzene reductive; dnb; degradation alkaline

Journal Title: Chemosphere
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.