LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Fungal endophytes and their interactions with plants in phytoremediation: A review.

Photo from archive.org

Endophytic microorganisms (including bacteria and fungi) are likely to interact closely with their hosts and are more protected from adverse changes in the environment. The microbiota contribute to plant growth,… Click to show full abstract

Endophytic microorganisms (including bacteria and fungi) are likely to interact closely with their hosts and are more protected from adverse changes in the environment. The microbiota contribute to plant growth, productivity, carbon sequestration, and phytoremediation. Elevated levels of contaminants (i.e. metals) are toxic to most plants, the plant's metabolism and growth were impaired and their potential for metal phytoextraction is highly restricted. Exploiting endophytic microorganisms to reduce metal toxicity to plants have been investigated to improve phytoremediation efficiencies. Fungi play an important role in organic and inorganic transformation, element cycling, rock and mineral transformations, bioweathering, mycogenic mineral formation, fungal-clay interactions, and metal-fungal interactions. Endophytic fungi also showed potentials to enhance phytoremediation. Compared to bacteria, most fungi exhibit a filamentous growth habit, which provides the ability to adopt both explorative or exploitative growth strategies and form linear organs of aggregated hyphae to protect fungal translocation. However, the information regarding the role of endophytic fungi in phytoremediation are incomplete, this review highlights the taxa, physiological properties, and interaction of endophytic fungi with plants in phytoremediation.

Keywords: plants phytoremediation; endophytic fungi; endophytes interactions; fungal endophytes; phytoremediation; growth

Journal Title: Chemosphere
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.