LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Phosphate removal by lead-exhausted bioadsorbents simultaneously achieving lead stabilization.

Photo by dipaccicoffeeco from unsplash

Low-cost adsorbents have been continuously developed for heavy metal removal, but little information is available concerning the follow-up treatment of the toxic metal-laden adsorbents. In this study, an optional strategy… Click to show full abstract

Low-cost adsorbents have been continuously developed for heavy metal removal, but little information is available concerning the follow-up treatment of the toxic metal-laden adsorbents. In this study, an optional strategy was provided for the further treatment of heavy metal-impregnated low-cost adsorbents through employing them for phosphate retention. The enhancement of phosphate adsorption by the sorbed lead was first validated using several types of raw or modified waste biomass. Tea waste-supported hydrated manganese dioxide (HMO-TW) with the highest Pb sorption capability was then chosen to systematically evaluate phosphate retention. Phosphate adsorption onto lead-laden HMO-TW (HMO-TW(Pb)) was pH-insensitive with only slight decline at pH > 8.5, and was barely affected by competing anions owing to the specific surface precipitation mechanism. Moreover, no signs of lead leakage from HMO-TW(Pb) were observed during phosphate adsorption at a wide pH range (4.2-11.3) and high ion strength (0-250 mg L-1 NaNO3). The lead on HMO-TW(Pb) was greatly stabilized through phosphate retention, which also reduced the environmental risks of their following treatment such as solidification and landfill. Additionally, the phosphate adsorption onto HMO-TW(Pb) was quick (with equilibrium time <60 min) and barely affected by temperature. Fixed-bed column test further suggested that HMO-TW(Pb) has practical applicability in efficient removal of phosphate from water.

Keywords: phosphate retention; hmo; phosphate adsorption; lead; phosphate

Journal Title: Chemosphere
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.