LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Sorption mechanisms of arsenate on Mg-Fe layered double hydroxides: A combination of adsorption modeling and solid state analysis.

Photo from wikipedia

Layered double hydroxides have been proposed as effective sorbents for As(V), but studies investigating adsorption mechanisms usually lack a comprehensive mechanistic/modeling approach. In this work, we propose coupling surface complexation… Click to show full abstract

Layered double hydroxides have been proposed as effective sorbents for As(V), but studies investigating adsorption mechanisms usually lack a comprehensive mechanistic/modeling approach. In this work, we propose coupling surface complexation modeling with various spectroscopic techniques. To this end, a series of batch experiments at different pH values were performed. Kinetic data were well fitted by a pseudo-second order kinetic model, and the equilibrium data were fitted by the Freundlich model. Moreover, the pH-dependent As(V) sorption data were satisfactorily fitted by a diffuse layer model, which described the formation of >SOAsO3H- monodentate and >(SO)2AsO2- bidentate inner-sphere complexes (">S" represents a crystallographically-bound group on the surface). Additionally, XPS analyses confirmed the adsorption mechanisms. The sorption mechanisms were affected by anion exchange, which was responsible for the formation of outer sphere complexes, as identified by XRD and FTIR analyses. Furthermore, a homogenous distribution of As(V) was determined by HR-TEM with elemental mapping. Using low-temperature Mössbauer spectroscopy on isotope 57Fe, a slight shift of the hyperfine parameters towards higher values following As(V) sorption was measured, indicating a higher degree of structural disorder. In general, mechanistic adsorption modeling coupled with solid state analyses presents a powerful approach for investigating the adsorption mechanism of As(V) on Mg-Fe LDH or other sorbents.

Keywords: layered double; adsorption; sorption; adsorption modeling; double hydroxides; sorption mechanisms

Journal Title: Chemosphere
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.