LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Computational study involving identification of endocrine disrupting potential of herbicides: Its implication in TDS and cancer progression in CRPC patients.

Photo from wikipedia

Several environmental pollutants, including herbicides, act as endocrine disrupting chemicals (EDCs). They can cause cancer, diabetes, obesity, metabolic diseases and developmental problems. Present study was conducted to screen 608 herbicides… Click to show full abstract

Several environmental pollutants, including herbicides, act as endocrine disrupting chemicals (EDCs). They can cause cancer, diabetes, obesity, metabolic diseases and developmental problems. Present study was conducted to screen 608 herbicides for evaluating their endocrine disrupting potential. The screening was carried out with the help of endocrine disruptome docking program, http://endocrinedisruptome.ki.si (Kolsek et al., 2013). This program screens the binding affinity of test ligands to 12 major nuclear receptors. As high as 252 compounds were capable of binding to at least three receptors wherein 10 of them showed affinity with at-least six receptors based on this approach. The latter were ranked as potent EDCs. Majority of the screened herbicides were acting as antagonists of human androgen receptor (hAR). A homology modeling approach was used to construct the three dimensional structure of hAR to understand their binding mechanism. Docking results reveal that the most potent antiandrogenic herbicides would bind to hydrophobic cavity of modeled hAR and may lead to testicular dysgenesis syndrome (TDS) on fetal exposure. However, on binding to T877 mutant AR they seem to act as agonists in castration-resistant prostate cancer (CRPC) patients.

Keywords: disrupting potential; endocrine disrupting; study; cancer; crpc patients

Journal Title: Chemosphere
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.