LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Atmospheric wet deposition of dissolved trace elements to Jiaozhou Bay, North China: Fluxes, sources and potential effects on aquatic environments.

Photo from archive.org

To analyze the fluxes, seasonal variations, sources and potential ecological effects of dissolved trace elements (TEs) in atmospheric wet deposition (AWD), one-year wet precipitation samples were collected and determined for… Click to show full abstract

To analyze the fluxes, seasonal variations, sources and potential ecological effects of dissolved trace elements (TEs) in atmospheric wet deposition (AWD), one-year wet precipitation samples were collected and determined for nine TEs in Jiaozhou Bay (JZB) between June 2015 and May 2016. Both the volume-weighted mean (VWM) concentration and flux sequence for the measured TEs was Al > Mn > Zn > Fe > Pb > Se > Cr > Cd > Co. Al was the most abundant TE with a VWM concentration and wet flux of 33.8 μg L-1 and 29.2 mg m-2 yr-1, which were 2 and 3 orders of magnitude higher than those of Co, respectively. The emission intensities of pollutants, rainfall amount and wind speed were the dominating factors influencing seasonal variations of TEs in AWD. Based on enrichment factors, correlation analysis and principal component analysis, most of the TEs in AWD were primarily originated from anthropogenic activities except for Al and Fe, which are typically derived from re-suspended soil dusts. Although the TE inputs by AWD were significantly lower than those by rivers, the TE inputs via short-term heavy rains would distinctly increase surface seawater TE concentrations and then pollute the marine environment of JZB. AWD would have both profound impacts on the biogeochemical cycles of TEs and dual ecological effects (nutrient and toxicity) on aquatic organisms.

Keywords: wet deposition; sources potential; atmospheric wet; jiaozhou bay; trace elements; dissolved trace

Journal Title: Chemosphere
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.