LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Redox chemistry of nickel in soils and sediments: A review.

Photo from wikipedia

Knowledge on the redox geochemistry of Ni is behind in comparison to other heavy metals. Hence, this article reviews the direct and indirect impact of redox potential (EH) on mobilization… Click to show full abstract

Knowledge on the redox geochemistry of Ni is behind in comparison to other heavy metals. Hence, this article reviews the direct and indirect impact of redox potential (EH) on mobilization and release dynamics of Ni in soils and sediments across the world. Nickel can show a different behavior in response to EH. Mobilization of Ni increased at low EH in various soils; however, oxic conditions can lead to an increased mobilization of Ni in other soils. Those differences occur because the mobilization of Ni is often indirectly affected by EH, e.g. through EH-dependent pH changes, co-precipitation with iron (Fe) and manganese (Mn) (hydr)oxides, complexation with soil organic carbon, similar position of Ni and magnesium (Mg) in the soil solid phase, and/or precipitation as sulphides. Dissolved concentrations of Ni showed a similar pattern like Fe and increased at low EH in many soils, which might be explained by the reductive dissolution of Fe (hydr)oxides and the release of the co-precipitated/sorbed Ni. Few other studies indicated that Ni might be associated with Mn oxides rather than with Fe oxides. Additionally, the formation of soluble complexes with dissolved organic carbon may contribute to a mobilization of Ni at low EH. Nickel and Mg are similarly affected by redox changes especially in serpentine soils. This review summarizes the recent knowledge about the redox chemistry of Ni and contributes thus to a better understanding of the potential mobilization, hazard, and eco-toxicity of Ni in frequently flooded soils and sediments as agricultural ecosystems.

Keywords: chemistry nickel; redox chemistry; soils sediments; chemistry; mobilization

Journal Title: Chemosphere
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.