LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effects of multi-environmental factors on physiological and biochemical responses of large yellow croaker, Larimichthys crocea.

Photo by karsten_wuerth from unsplash

Land-based recirculating aquaculture systems (RAS) and cage culture are important methods of Larimichthys crocea production. The effects of environmental factors on physiological and biochemical aspects of L. crocea require clarification. Temperature… Click to show full abstract

Land-based recirculating aquaculture systems (RAS) and cage culture are important methods of Larimichthys crocea production. The effects of environmental factors on physiological and biochemical aspects of L. crocea require clarification. Temperature and salinity are controlled in RAS and directly affect L. crocea growth and survival. To explore optimal parameters, the oxygen consumption rate (RO), ammonium excretion rate (RN), and O/N ratio at different temperatures (8, 14, 20, 26, and 32 °C) and salinities (5, 15, 25, and 35‰) were determined. RO, RN, and O/N first increased and then decreased with elevated temperature and salinity, peaking at 26 °C and 25‰, respectively. This suggests that the metabolism of L. crocea was maximal at 26 °C and 25‰ salinity, which promote its growth and survival. Additionally, hypoxia affects cage culture, and has significant effects on enzymatic activities and stress-inducible gene expression. To accelerate the selective breeding of hypoxia-tolerant L. crocea in cage culture, we measured adenosine triphosphatase (ATPase), lactate dehydrogenase (LDH), and succinate dehydrogenase (SDH) activities, and hypoxia-inducing factor 1 (HIF-1) mRNA expression in the myocardium under hypoxia (2.5, 3.5, and 4.5 mg L-1). ATPase and SDH activities first decreased and then increased under hypoxia, whereas LDH activity and HIF-1α expression first increased and then decreased. Thus, under hypoxia, the myocardial mitochondria switched from being susceptible to being resistant to injury induced by energy metabolism, and respiration in L. crocea likely converted from aerobic to anaerobic during adaptation. Furthermore, the upregulation of HIF-1α mRNA suggests it has an active role in protection against anoxic damage.

Keywords: crocea; environmental factors; physiological biochemical; factors physiological; larimichthys crocea; cage culture

Journal Title: Chemosphere
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.