LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

High growth potential and nitrogen removal performance of marine anammox bacteria in shrimp-aquaculture sediment.

Photo from wikipedia

Anaerobic ammonium oxidation (anammox) bacteria were enriched in continuous packed-bed columns with marine sediment. One column (SB-C) was packed with only marine sediment collected from a shrimp-aquaculture pond, and another… Click to show full abstract

Anaerobic ammonium oxidation (anammox) bacteria were enriched in continuous packed-bed columns with marine sediment. One column (SB-C) was packed with only marine sediment collected from a shrimp-aquaculture pond, and another column (SB-AMX) was inoculated with marine anammox bacteria (MAB) as a control. These columns were continuously fed with natural or artificial seawater including ammonium (NH4+) and nitrite (NO2-). The SB-AMX showed anammox activities from the beginning and continued for over 200 days. However, the SB-C had no nitrogen removal performance for over 170 days. After adding a bicarbonate solution (KHCO3) to the sediment-only packed column, anammox activity was observed within 13 days. The column exhibited a nitrogen removal efficiency (NRE) of 88% at a nitrogen loading rate (NLR) of 1.0 kg-N·m-3·day-1, which was comparable to the control one. A next-generation sequencing analysis revealed the predominance of MAB related to "Candidatus Scalindua spp.". In addition, the co-occurrence of sulfur-oxidizing denitrifiers was observed, which suggests their symbiotic relationship. This study suggests the applicability of MAB for in-situ bioremediation of nitrogen-contaminated marine sediments and reveals a potential microbial interaction between anammox and sulfur-oxidizing communities responsible for nitrogen and sulfur cycling in marine aquaculture systems.

Keywords: removal performance; nitrogen removal; shrimp aquaculture; sediment; anammox bacteria; marine anammox

Journal Title: Chemosphere
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.