LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Impact of a commercial glyphosate formulation on adsorption of Cd(II) and Pb(II) ions on paddy soil.

Photo by roanlavery from unsplash

Use of glyphosate as a weedicide on rice cultivation has been a controversial issue in Sri Lanka, due to the hypothesis that the metal complexes of commercial glyphosate is one… Click to show full abstract

Use of glyphosate as a weedicide on rice cultivation has been a controversial issue in Sri Lanka, due to the hypothesis that the metal complexes of commercial glyphosate is one of the causative factors of Chronic Kidney Disease of unknown aetiology (CKDu) prevalent in some parts of Sri Lanka. The effect of commercial glyphosate on the adsorption and desorption of Cd(II) and Pb(II) ions on selective paddy soil studied using batch experiments, over a wide concentration range, indicates that the Langmuir adsorption isotherm model is obeyed at low initial metal ion concentrations while the Freundlich adsorption isotherm model obeys at high metal ion concentrations in the presence and absence of glyphosate. For all cases, adsorption of both Cd(II) and Pb(II) ions obeys pseudo second order kinetics, suggesting that initial adsorption is a chemisorption process. In the presence of glyphosate formulation, the extent of adsorption of Cd(II) and Pb(II) ions on soil is decreased, while their desorption is increased at high concentrations of glyphosate. Low concentrations of glyphosate formulation do not significantly affect the desorption of metal ions from soil. Reduction of adsorption leads to enhance the concentration of Cd(II) and Pb(II) ions in the aqueous phase when in contact with soil.

Keywords: adsorption; adsorption ions; glyphosate formulation; commercial glyphosate; glyphosate

Journal Title: Chemosphere
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.