LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Properties of magnetic carbon nanomaterials and application in removal organic dyes.

Photo from wikipedia

Magnetic carbon nanomaterials were prepared facilely by one step hydrothermal synthesis method using biologically regenerated glucose as carbon sources and ferric ammonium citrate as iron sources. As-synthesized nanomaterials were characterized… Click to show full abstract

Magnetic carbon nanomaterials were prepared facilely by one step hydrothermal synthesis method using biologically regenerated glucose as carbon sources and ferric ammonium citrate as iron sources. As-synthesized nanomaterials were characterized by means of SEM, TEM, XRD, N2 adsorption-desorption, VSM and XPS etc. techniques. Results show as-prepared magnetic nanomaterials are sphere particles with aggregation state and magnetic α-Fe particles are enclosed by carbon matrixes. With increase of calcination temperature, the degrees of the sample aggregation decrease, whereas the average particle sizes, BET specific surface areas and saturation magnetizations increase. The carbon with graphite structure has higher adsorption efficiency than that of amorphous carbon for organic dye rhodamine B in water. Whereas the iron with amorphous structure shows higher photocatalytic activity than that of the iron with crystalline structure for the degradation of rhodamine B. And rhodamine B in water can almost be degraded completely through the combination of adsorption and photocatalysis.

Keywords: carbon; application removal; nanomaterials application; carbon nanomaterials; properties magnetic; magnetic carbon

Journal Title: Chemosphere
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.