LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Acute and (sub)chronic toxicity of the neonicotinoid imidacloprid on Chironomus riparius.

Photo from wikipedia

Impacts of neonicotinoids on non-target insects, including aquatic species, may significantly influence ecosystem structure and functioning. The present study investigated the sensitivity of Chironomus riparius to imidacloprid exposures during 24-h,… Click to show full abstract

Impacts of neonicotinoids on non-target insects, including aquatic species, may significantly influence ecosystem structure and functioning. The present study investigated the sensitivity of Chironomus riparius to imidacloprid exposures during 24-h, 10- and 28-days by assessing larval survival, growth, emergence and oxidative stress-related parameters. C. riparius exhibited high sensitivity compared to other model aquatic species with acute 24-h LC50 being 31.5 μg/L and 10-days LOEC (growth) 0.625 μg/L. A 28-days partial life cycle test demonstrated imidacloprid effects on the emergence of C. riparius. Exposure to sublethal concentrations during 10-days caused an imbalance in the reduced and oxidized glutathione (GSH and GSSG), and slightly induced lipid peroxidation (increased malondialdehyde, MDA). Our results indicate that oxidative stress may be a relevant mechanism in the neonicotinoid toxicity, reflected in the insect development and life cycle parameters.

Keywords: sub chronic; riparius; toxicity; chironomus riparius; acute sub

Journal Title: Chemosphere
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.