LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Antioxidative response of Phanerochaete chrysosporium against silver nanoparticle-induced toxicity and its potential mechanism.

Photo by cdc from unsplash

Antioxidative response of Phanerochaete chrysosporium induced by silver nanoparticles (AgNPs) and their toxicity mechanisms were comprehensively investigated in a complex system with 2,4-dichlorophenol (2,4-DCP) and Ag+. Malondialdehyde content was elevated… Click to show full abstract

Antioxidative response of Phanerochaete chrysosporium induced by silver nanoparticles (AgNPs) and their toxicity mechanisms were comprehensively investigated in a complex system with 2,4-dichlorophenol (2,4-DCP) and Ag+. Malondialdehyde content was elevated by 2,4-DCP, AgNPs, and/or Ag+ in concentration- and time-dependent manners within 24 h, indicating an increase in lipid peroxidation. However, beyond 48 h of exposure, lipid peroxidation was alleviated by upregulation of intracellular protein production and enhancement in the activities of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD). Comparatively, POD played more major roles in cell protection against oxidative damage. Furthermore, the dynamic change in reactive oxygen species (ROS) level was parallel to that of oxidized glutathione (GSSG), and ROS levels correlated well with GSSG contents (R2 = 0.953) after exposure to AgNPs for 24 h. This finding suggested that elimination of oxidative stress resulted in depletion of reduced glutathione. Coupled with the analyses of anoxidative responses of P. chrysosporium under the single and combined treatments of AgNPs and Ag+, HAADF-STEM, SEM, and EDX demonstrated that AgNP-induced cytotoxicity could originate from the original AgNPs, rather than dissolved Ag+ or the biosynthesized AgNPs.

Keywords: toxicity; response phanerochaete; antioxidative response; phanerochaete chrysosporium

Journal Title: Chemosphere
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.