LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Facile one-pot synthesis of a porphyrin-based hydrophilic porous organic polymer and application as recyclable absorbent for selective separation of methylene blue.

Photo from wikipedia

With the development of dye production and printing industry, dyes wastewater has increased dramatically. The resulting environmental pollution problem is increasing seriously. In the present work, a porphyrin-based porous organic… Click to show full abstract

With the development of dye production and printing industry, dyes wastewater has increased dramatically. The resulting environmental pollution problem is increasing seriously. In the present work, a porphyrin-based porous organic polymer (PPOPs-OH) was synthesized by using pyrrole and 2,6-dihydroxynaphthalene-1,5-dicarbaldehyde (DHNDA) as basic building block in situ. This method was cost- and time-efficient, without the participation of metal catalysts. Further reaction of PPOPs-OH with chlorosulfonic acid, a new sulfonic acid functional material (PPOPs-SO3H) was obtained with the increasing electronegativity and hydrophilicity. PPOPs-SO3H exhibit good adsorption capacity for methylene blue (MB) from water (980.4 mg g-1) and excellent selectivity for MB in the present of rhodamine B (RhB) and methyl orange (MO). Mechanism investigation revealed that electrostatic in comparison with π-π interaction is the prominent force in the absorption process. Recycling experiments found the absorption properties of PPOPs-SO3H did not reduce significantly after several cycles. As a consequence, our findings highlight an appealing opportunities for covalent organic polymers with their potential application as high-efficiency and robust adsorbents for pollutants removal and environmental protection.

Keywords: methylene blue; porous organic; porphyrin based; organic polymer

Journal Title: Chemosphere
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.