In this study, FeMoO4 was applied to activate persulfate (PS, S2O82-) for azo dye Orange G (OG) degradation. The catalyst was characterized by X-ray diffraction (XRD), scanning electron microscope (SEM),… Click to show full abstract
In this study, FeMoO4 was applied to activate persulfate (PS, S2O82-) for azo dye Orange G (OG) degradation. The catalyst was characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS) and nitrogen adsorption-desorption isotherms. FeMoO4 showed excellent efficiency in activating PS for OG removal. More than 95% could be removed after 40 min under reaction conditions of 4 mM PS, 0.3 g L-1 FeMoO4 and 0.2 mM OG. The effect of different parameters (PS doses, FeMoO4 doses and pH) were evaluated. The results showed that acid condition provided higher efficiency and overdosing FeMoO4 and PS presented a scavenging effect. Major intermediates were identified and possible degradation pathway was proposed. Recycle tests presented that FeMoO4 had excellent recyclable stability in activating PS for OG removal. Sulfate radicals and hydroxyl radicals all occurred in the oxidation reactions and the former came first. The oxidation reaction was involved in the translation of Fe2+/Fe3+ occurred on the surface layer. This study revealed that the FeMoO4/PS system is a very promising method for degrading organic contaminants in the environment.
               
Click one of the above tabs to view related content.