LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Impact of pH on the stability, dissolution and aggregation kinetics of silver nanoparticles.

Photo from wikipedia

Widespread usage of silver nanoparticles (AgNPs) in consumer products has resulted in their presence in the aquatic environment. The evolution of the properties of AgNPs with changes in pH and… Click to show full abstract

Widespread usage of silver nanoparticles (AgNPs) in consumer products has resulted in their presence in the aquatic environment. The evolution of the properties of AgNPs with changes in pH and time in terms of colloidal stability, dissolution and aggregation were investigated in a series of short and long-term experiments using freshly synthesized uncoated AgNPs. The solution pH modifies the surface charge and the oxidative dissolution of AgNPs. As a result, the particle behavior varied in acidic and alkaline conditions. The particle size decreased with the increasing pH at a given time frame resulting in lower aggregation in the higher pH regime and increased particle stability. These results have been further proved with the direct evidence obtained using time resolved in situ imaging acquired through Liquid cell transmission electron microscopy (LCTEM). Furthermore, the magnitude of the impact of the pH on the particle properties is higher than the impact of the dissolved oxygen concentration. The derived empirical formulae reflect that the AgNP oxidation depends on both dissolved oxygen and protons while the AgNP dissolution increasing with the increase of either of these. Overall, our results highlight the impact of the solution pH on the evolution of the properties of AgNPs over the time and provide an insight to confidently extend the results to predict the environmental transformation of AgNPs from ideal systems to the real.

Keywords: aggregation; silver nanoparticles; time; stability dissolution; dissolution aggregation; dissolution

Journal Title: Chemosphere
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.