LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Melatonin, glutathione and thiourea attenuates lead and acid rain-induced deleterious responses by regulating gene expression of antioxidants in Trigonella foenum graecum L.

Photo by maxwbender from unsplash

Lead and acid rain are important abiotic stress factors that limit the growth, development, metabolic activity and yield of the crops. Melatonin (MT; an indoleamine molecule), glutathione (GSH; free thiol… Click to show full abstract

Lead and acid rain are important abiotic stress factors that limit the growth, development, metabolic activity and yield of the crops. Melatonin (MT; an indoleamine molecule), glutathione (GSH; free thiol tripeptide) and thiourea (TU; non physiological thiol based ROS scavenger) have been known to mediate several physiological, biochemical and molecular processes in plants under different kinds of environmental threats. However, the roles of MT, GSH and TU in stress tolerance against combined effect of lead and simulated acid rain (SAR) remains inexpressible. In this study, we investigated the response of Trigonella foenum graecum L. (Fenugreek) to combined application of lead (1200 ppm) and SAR (pH 3.5), and the potential roles of MT (50 μM), GSH (1 mM) and TU (3 mM) in enhancing lead and SAR stress tolerance of Fenugreek. The results showed that co-application of each MT, GSH and TU along with lead and SAR improved the growth and development of seedlings. Moreover, MT, GSH and TU treatments stabilized the cell membrane integrity, reduced ROS accumulation [superoxide radical (O2-) and hydrogen peroxide (H2O2)], malondialdehyde (MDA) content, lipoxygenase (LOX) activity and, enhanced protein accumulation and up-regulated the gene expressions of catalase (CAT) and superoxide dismutase (SOD) significantly. Furthermore, the present work provides strong evidence regarding protective roles of MT, GSH and TU against oxidative stress resulted from lead and SAR stress in Fenugreek. Considering these observations, MT, GSH and TU can be utilized as efficient ROS scavengers, for improving growth and increasing antioxidant capacity in lead and SAR stressed seedlings.

Keywords: acid rain; foenum graecum; trigonella foenum; lead acid; sar; rain

Journal Title: Chemosphere
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.