LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Formation of N-nitrosamines during the analysis of municipal secondary biological nutrient removal process effluents by US EPA method 521.

Photo from wikipedia

US EPA Method 521 employs activated carbon-based solid phase extraction (SPE) cartridges for analyzing N-nitrosamines. The analysis of N-nitrosamines and their chloramine-reactive and ozone-reactive precursors in nitrified municipal secondary effluent… Click to show full abstract

US EPA Method 521 employs activated carbon-based solid phase extraction (SPE) cartridges for analyzing N-nitrosamines. The analysis of N-nitrosamines and their chloramine-reactive and ozone-reactive precursors in nitrified municipal secondary effluent revealed the potential for NDMA to form as an artefact during the analysis. As samples passed through the SPE cartridge, the activated carbon mediated the reaction of nitrite with dimethylamine to form NDMA. The reaction was not significant with tertiary amines. Artefactual NDMA formation was important for nitrite concentrations >0.2 mg/L as N in the Biological Nitrogen Removal (BNR) process effluent. However, it is difficult to define a general threshold for nitrite concentrations, because the importance of the reaction also depends on secondary amine concentrations, which are usually poorly characterized. Pre-treatment of samples with sulfamic acid to destroy nitrite mitigated the artefact. This artefact did not affect NDMA analysis in a nitrified effluent from another facility, likely due to low dimethylamine concentrations. This artefact also did not affect the analysis of primary effluent, due to the lack of nitrite, or the analysis of other N-nitrosamines, likely due to the lack of their secondary amine precursors. Because chloramination does not significantly degrade nitrite, this artefact could affect the analysis of chloramine-reactive N-nitrosamine precursors. Because ozonation rapidly degrades nitrite, it should not affect the analysis of ozone-reactive precursors. However, ozonation at 0.8 mg ozone/mg dissolved organic carbon resulted in significant degradation of all N-nitrosamines, even though simultaneous NDMA formation from ozone-reactive precursors resulted in a net increase in NDMA concentration.

Keywords: municipal secondary; epa method; analysis; formation; method 521; nitrosamines analysis

Journal Title: Chemosphere
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.