LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Halogenated flame retardants in mangrove sediments from the Pearl River Estuary, South China: Comparison with historical data and correlation with microbial community.

Photo by voneciacarswell from unsplash

Polybrominated diphenyl ethers (PBDEs), decabromodiphenyl ethane (DBDPE), 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE), tetrabromobisphenol A (TBBPA), hexabromocyclododecane (HBCDD) and dechlorane plus (DP) were measured in sediments collected from three mangrove wetlands of the Pearl… Click to show full abstract

Polybrominated diphenyl ethers (PBDEs), decabromodiphenyl ethane (DBDPE), 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE), tetrabromobisphenol A (TBBPA), hexabromocyclododecane (HBCDD) and dechlorane plus (DP) were measured in sediments collected from three mangrove wetlands of the Pearl River Estuary (PRE) in South China. This study aims to investigate the distribution of these halogenated flame retardants (HFRs) and the correlations between HFRs and microbial community structure in mangrove sediments. Concentrations of PBDEs, DBDPE, BTBPE, TBBPA, HBCDD and DP in mangrove sediments ranged from 6.97 to 216.1, 3.70-26.0, 0.02-0.73, 0.02-37.5, 0.44-127.5 and 0.07-2.23 ng/g dry weight, respectively. Higher levels of PBDEs, BTBPE, HBCDD and DP were observed in sediments from Futian mangrove wetland of Shenzhen, the only nature reserve located in the downtown of China. The highest concentration of TBBPA found in mangrove sediments from Guangzhou was proximate to a ferry terminal and a dockyard where TBBPA is widely used in the coatings. PBDEs were the predominant HFRs in mangrove sediments, with an average contribution of 63.0%. Mangrove sediments from Guangzhou and Zhuhai showed an enrichment of (-)-α-HBCDD, (-)-β-HBCDD and (-)-γ-HBCDD. Concentrations of HFRs in mangrove sediments from Guangzhou increased significantly from 2012 to 2015, which was probably due to the establishment and rapid development of Nansha Free Trade Zone of Guangzhou. Redundancy analysis showed that HFRs may cause a shift of microbial community structure in mangrove sediments and the variations were significantly correlated with TBBPA, syn-DP and BTBPE.

Keywords: mangrove sediments; microbial community; hbcdd; mangrove; china

Journal Title: Chemosphere
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.