LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Cytotoxic and genotoxic effects of epoxiconazole on F98 glioma cells.

Photo from archive.org

Epoxiconazole (EPX) is a very effective fungicide of the triazole family. Given its wide spectrum of use, the increased application of this pesticide may represent a serious risk on human… Click to show full abstract

Epoxiconazole (EPX) is a very effective fungicide of the triazole family. Given its wide spectrum of use, the increased application of this pesticide may represent a serious risk on human health. Previous studies have found that EPX is cytotoxic to cells, although the exact mechanism remains elusive. In particular, the effect on the nervous system is poorly elucidated. Here we evaluated the implication of oxidative stress in the neurotoxicity and studied its apoptotic mechanism of action. We demonstrated that the treatment by EPX reduces the viability of cells in a dose dependent manner with an IC50 of 50 μM. It also provokes the reduction of cell proliferation. EPX could trigger arrest in G1/S phase of cell cycle with low doses, however with IC50, it induced an accumulation of F98 cells in G2/M phase. Moreover, EPX induced cytoskeleton disruption as evidenced by immunocytochemical analysis. It provoked also DNA fragmentation in a concentration dependent manner. The EPX induced apoptosis, which was observed by morphological changes and by positive Annexin V FITC-PI staining concurrent with a depolarization of mitochondria. Furthermore, the cell mortality provoked by EPX was significantly reduced by pretreatment with Z-VAD-FMK, a caspase inhibitor. Moreover, N-acetylcysteine (NAC) strongly restores cell viability that has been inhibited by EPX. The results of these findings highlight the implication of ROS generation in the neurotoxicity induced by EPX, indicating that the production of ROS is the main cause of the induction of apoptosis probably via the mitochondrial pathway.

Keywords: effects epoxiconazole; f98 glioma; genotoxic effects; epx; cytotoxic genotoxic; epoxiconazole f98

Journal Title: Chemosphere
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.