Polyfluorinated dibenzo-p-dioxins (PFDDs) are dioxin compounds that have been detected in industrial fluoroaromatic chemicals and can cause adverse effects to organisms. In this work, the photochemical behaviors of PFDDs congeners… Click to show full abstract
Polyfluorinated dibenzo-p-dioxins (PFDDs) are dioxin compounds that have been detected in industrial fluoroaromatic chemicals and can cause adverse effects to organisms. In this work, the photochemical behaviors of PFDDs congeners on silica was systematically investigated. The pseudo-first-order rate constants (k, h-1) of surface photolysis changed with the substitution number and position of fluorine atoms, and the tetra-fluorinated PFDDs tended to degrade more efficiently. Octafluorinated dibenzo-p-dioxin (OFDD) was selected as a representative to explore the reaction mechanisms. Product analysis showed that OFDD was decomposed into hydroxylated PFDDs (OH-PFDDs) and hydroxylated polyfluorinated diphenyl ethers (OH-PFDEs) via hydroxyl substitution and (OH radical mediated or direct) C-O bond cleavage. Coupling elimination reaction was also observed, resulting in the formation of three-membered and four-membered ring compounds. According to the extracted peak areas in mass spectra and the energy barrier in potential energy surface, direct homolysis of C-O bond occurs as the dominant reaction pathway. This work could provide some new insights into the environmental fate of dioxin compounds.
               
Click one of the above tabs to view related content.