In this study, ionic liquid (IL) 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6])-modified magnetic graphene oxide (MGO-IL) was prepared for the first time, and was used to adsorb and remove arsenic (As(Ⅲ) and As(V))… Click to show full abstract
In this study, ionic liquid (IL) 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6])-modified magnetic graphene oxide (MGO-IL) was prepared for the first time, and was used to adsorb and remove arsenic (As(Ⅲ) and As(V)) ions from aqueous solution. MGO-IL was characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, and magnetization curves. Effects of ionic liquid type, solution pH, initial arsenic concentration and contact time on the adsorption performance of MGO-IL for As(Ⅲ) and As(V) were studied. The experimental results showed that the adsorption equilibrium was achieved within 30 min, with maximum adsorption capacities of 160.65 mg g-1 for As(Ⅲ) and 104.13 mg g-1 for As(V), respectively, and MGO-IL could be rapidly isolated from solution by applying a magnetic field. MGO-IL was reused for 5 times, without marked decrease in its adsorption capacities. Moreover, common coexisting anions did not interfere with the absorption of As(Ⅲ) and As(V). Compared with MGO, the sorption quantities of MGO-IL for As(Ⅲ) and As(V) were greatly enhanced, and the equilibrium time was significantly reduced. Therefore, MGO-IL can potentially serve as an excellent adsorbent for the simultaneous separation and removal of As(Ⅲ) and As(V) from water.
               
Click one of the above tabs to view related content.