LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Preparation and characterization of novel green synthesized iron-aluminum nanocomposite and studying its efficiency in fluoride removal.

Photo from wikipedia

A novel green synthesized iron-aluminum nanocomposite was prepared and characterized by FESEM, FTIR, EDX, XRD, BET, DSC and TGA analysis. The clove extract acting as both reducing and surface coating… Click to show full abstract

A novel green synthesized iron-aluminum nanocomposite was prepared and characterized by FESEM, FTIR, EDX, XRD, BET, DSC and TGA analysis. The clove extract acting as both reducing and surface coating agent was optimized based on its maximum total flavonoid content (TFC) and total polyphenolic content (TPC). Fluoride adsorption studies was performed at 298K, 303K and 313K within the range of 10-40 mg/L fluoride solution for kinetic and isotherm studies. Maximum adsorption capacity of 42.95 mg/g was obtained for 0.25 g/L adsorbent dosage. Moreover fluoride adsorption obeyed pseudo second order kinetic model whereas the process was multistage diffusion controlled. Langmuir isotherm model best fitted the equilibrium data with monolayer adsorption capacities of 25.09, 26.08 and 28.07 mg/g at 298, 303 and 313K respectively. The findings confirmed that the fluoride adsorption process followed ion exchange mechanism with the surface hydroxyl groups. The prepared nanocomposite was utilized for treating fluoride contaminated water samples from north-east regions of India which showed efficient removal percentage.

Keywords: adsorption; green synthesized; iron aluminum; synthesized iron; novel green; aluminum nanocomposite

Journal Title: Chemosphere
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.