LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Physiological differences between free-floating and periphytic filamentous algae, and specific submerged macrophytes induce proliferation of filamentous algae: A novel implication for lake restoration.

Photo from wikipedia

Restoration of submerged macrophytes is widely applied to counteract eutrophication in shallow lakes. However, proliferation and accumulation of filamentous algae (possessing free-floating and periphytic life forms) hamper growth of submerged… Click to show full abstract

Restoration of submerged macrophytes is widely applied to counteract eutrophication in shallow lakes. However, proliferation and accumulation of filamentous algae (possessing free-floating and periphytic life forms) hamper growth of submerged macrophytes. Here, we explored factors triggering the excessive proliferation of filamentous algae during lake restoration using field investigations and laboratory experiments. Results showed that, compared with free-floating Oscillatoria sp. (FO), periphytic Oscillatoria sp. (PO) showed faster growth rate, greater photosynthetic capacities and higher phosphorus (P) affinity. Therefore, PO was physiologically competitively superior to FO under low P concentration and improved light conditions. And proliferation of filamentous algae was mainly manifested in periphytic life form. Besides, field results showed that density of filamentous algae in water column might be related to substrate types. Some macrophyte (Ceratophyllum oryzetorum and Potamogeton crispus) might provide proper substrates for proliferation of filamentous algae. Further physiological experiments found that Oscillatoria showed specific eco-physiological responses to different macrophyte species. Hydrilla verticillata and C. oryzetorum promoted growth and photosynthetic activity of Oscillatoria, while Potamogeton malaianus inhibited growth and P uptake of PO. Myriophyllum spicatum exhibited no impact on growth of Oscillatoria. Our results revealed the intrinsic (physiological differences between free-floating and periphytic life forms of filamentous algae) and extrinsic (different macrophytes) factors affect the proliferation of filamentous algae, which are important for guidance on planting of submerged macrophytes during lake restoration.

Keywords: algae; free floating; filamentous algae; restoration; proliferation filamentous; submerged macrophytes

Journal Title: Chemosphere
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.