LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Diazole and triazole inhibition of nitrification process in return activated sludge.

Photo by firmbee from unsplash

Azoles are emerging contaminants that are resistant to biodegradation during wastewater treatment. Their presence has been widely reported in wastewater effluents and receiving waters. In this work, the potential inhibition… Click to show full abstract

Azoles are emerging contaminants that are resistant to biodegradation during wastewater treatment. Their presence has been widely reported in wastewater effluents and receiving waters. In this work, the potential inhibition of nitrification process by six different azole compounds in wastewater treatment plants was investigated in batch bioassays. The azoles studied included three diazoles: pyrazole (Pz); 1-methylpyrazole (MePz); 3,5-dimethylpyrazole (DMePz); and three triazoles: 1,2,4-triazole (Tz); benzotriazole (BTz); and 5-methyl benzotriazole (MeBTz). The concentration of azoles causing 50% inhibition (IC50) increased (azoles became less inhibitory) in the following order (mg L-1): BTz (1.99) < MeBTz (2.18) < Pz (2.69) < Tz (3.53) < DMePz (17.3) < MePz (49.6). No clear structure-inhibitory relationships were found using Log P and pKa as structural properties. The toxicity of any given azole may be related to the role of substituent groups on disabling/enabling binding to the active sites of metallo-enzymes in nitrifying microorganisms. This is exemplified by the low toxicity of MePz, which has a cyclic N blocked by a methyl group. The observed inhibition caused to nitrifying bacteria is more severe than their cytotoxicity to other target organisms (e.g., methanogens and heterotrophic bacteria), suggesting a specific inhibition to the copper-containing enzyme, ammonium monooxygenase, in ammonia oxidizing nitrifying microorganisms.

Keywords: inhibition nitrification; diazole triazole; nitrification process; inhibition

Journal Title: Chemosphere
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.