LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Photoelectrocatalytic degradation of Ag-cyanide complexes and synchronous recovery of metallic Ag driven by TiO2 nanorods array photoanode combined with titanium cathode.

Photo by sharonmccutcheon from unsplash

A photoelectrocatalytic (PEC) system for the decomposition of Ag-cyanide complexes synchronously with Ag recovery was established using the titanium dioxide nanorods (TiO2 NRs) as photoanode and the titanium plate as… Click to show full abstract

A photoelectrocatalytic (PEC) system for the decomposition of Ag-cyanide complexes synchronously with Ag recovery was established using the titanium dioxide nanorods (TiO2 NRs) as photoanode and the titanium plate as cathode. The removal efficiency of total cyanide was 76.58%, and the recovery ratio of Ag achieved 84.48% at the applied bias potential of 1.0 V vs SCE in the PEC process. During the reaction, the surface variations and photo-electric properties of TiO2 NRs photoanode or titanium cathode were characterized by SEM-EDS, XPS, and photoelectronic analyses. It was indicated that Ag2O and metallic Ag were deposited onto the TiO2 NRs photoanode and titanium cathode, respectively. Specifically, the in situ generated Ag2O on the TiO2 NRs photoanode facilitated the separation of the photogenerated charge carriers and enhanced the visible-light response, thus improving its PEC catalytic activity toward cyanide destruction. Combined with the results of active species quenching experiments, the mechanism of Ag-cyanide complexes decomposition and metallic Ag recovery by the PEC process was proposed.

Keywords: recovery; photoanode; cathode; cyanide complexes; titanium

Journal Title: Chemosphere
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.