Cadmium (Cd) is considered as a carcinogenic chemical with potential to endanger normal cellular functioning. The present study was aimed to investigate the impact of Cd on the expression of… Click to show full abstract
Cadmium (Cd) is considered as a carcinogenic chemical with potential to endanger normal cellular functioning. The present study was aimed to investigate the impact of Cd on the expression of two oncogenic epigenetic regulators, viz., protein arginine methyltransferase 5 (PRMT5) and the polycomb repressive complex 2 (PRC2) member enhancer of Zeste homolog 2 (EZH2). Our results indicate that Cd at 1 μM concentration increases the viability of HepG2 and MCF7 cells and significantly upregulates the expression of PRMT5 and EZH2, leading to an increased global level of symmetric dimethylarginine (SDMA), H4R3me2s, and H3K27me3. The luciferase reporter assay showed that the promoter activity of PRMT5 and EZH2 is significantly enhanced in both cell lines. Furthermore, Cd exposure induces global DNA hypomethylation due to a decrease in DNA methyltransferases (DNMTs) expression. Methylation-specific and bisulfite sequencing PCR reveal that the proximal promoters of PRMT5 and EZH2, which harbour CpG islands, are almost demethylated when exposed to Cd. The Cd exposure also increases the protein level of transcription factors NFYA and E2F1; consistently, the two transcription factors are found to be enriched at the PRMT5 and EZH2 promoter in chromatin immunoprecipitation experiments. The alterations induced by Cd in the two cancer cell lines were also observed in a non-cancerous cell line (HEK-293). In conclusion, we propose that Cd increases the expression of two oncogenic methyltransferases, possibly with a DNA methylation-dependent mechanism. Further studies focused on the epigenetic alterations induced by Cd would provide mechanistic insights on the carcinogenicity of this metal toxicant at the molecular level.
               
Click one of the above tabs to view related content.