Transition metal and nanocarbon-based composites with high activity and stability draw great attention in electro-Fenton system for organic pollutants removal. In this study, HKUST-1-derived Cu@C nanoparticles embedded within three-dimensional reduced… Click to show full abstract
Transition metal and nanocarbon-based composites with high activity and stability draw great attention in electro-Fenton system for organic pollutants removal. In this study, HKUST-1-derived Cu@C nanoparticles embedded within three-dimensional reduced graphene oxide (rGO) network (denoted as 3DG/Cu@C) is synthesized through a simple strategy. The prepared catalyst shows ordered 3D porous carbon structure and Cu@C NPs are uniformly dispersed in the matrix. The 3DG/Cu@C is used as heterogeneous electro-Fenton (hetero-EF) catalyst and shows outstanding performance in various persistent organic pollutants removal. High concentration Rhodamine B (RhB) (40 mg L-1) can achieve a complete decolorization within 150 min with 25 mg L-1 3DG/Cu@C catalyst, which is one of the lowest catalyst dosages in hetero-EF for RhB removal. More importantly, the 3DG/Cu@C achieves high RhB mineralization efficiency of 81.5% and exhibits high catalytic performance in a wide pH window from 3 to 9. The 3DG/Cu@C also remains high efficiency after five successive reaction cycles. The working mechanism study shows that RhB is mainly oxidized by •OH and O2•- radicals through hetero-EF and anodic oxidation processes. The high stability and outstanding performance of 3DG/Cu@C provide new insights in organic pollutants removal by hetero-EF process with transition metal and nanocarbon-based catalysts.
               
Click one of the above tabs to view related content.