LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Photoelectrolysis of clopyralid wastes with a novel laser-prepared MMO-RuO2TiO2 anode.

Photo from archive.org

This paper studies the applicability of a novel laser-prepared mixed metal oxide (MMO-RuO2TiO2) anode in the photoelectrochemical degradation of clopyralid, a toxic and biorefractory herbicide. Results are compared to those… Click to show full abstract

This paper studies the applicability of a novel laser-prepared mixed metal oxide (MMO-RuO2TiO2) anode in the photoelectrochemical degradation of clopyralid, a toxic and biorefractory herbicide. Results are compared to those obtained using the well-known boron-doped diamond (BDD) anode and demonstrate that, although the electrolysis with diamond is more effective than that obtained with the new electrode, the irradiation of UVC light makes the novel MMO material more effective in chloride media. It was explained in terms of the homolysis of hypochlorous acid/hypochlorite to form chloride and hydroxyl radicals. Photoelectrochemical degradation with MMO produced a marked synergistic effect in TOC removal, especially in the presence of chloride ions. On the contrary, for the BDD anode, at the tested conditions, antagonisms were found in both sulfate and chloride media. These important synergisms allows finding conditions in which the novel anode can be competitive with the BDD.

Keywords: mmo ruo2tio2; laser prepared; anode; novel laser; ruo2tio2 anode

Journal Title: Chemosphere
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.