The disposal of contaminated plants limits the use of phytoremediation. Therefore, the disposal of contaminated sunflower was investigated after determining the phytoremediation of heavy metals under an oil crop rotation… Click to show full abstract
The disposal of contaminated plants limits the use of phytoremediation. Therefore, the disposal of contaminated sunflower was investigated after determining the phytoremediation of heavy metals under an oil crop rotation of sunflower (Helianthus annuus L)-sesame (Sesamum indicum L.). In the field experiment, the extraction efficiency of sunflower-sesame rotation was 0.07% for lead (Pb); 1.37% for zinc (Zn); 1.10% for copper (Cu); and 6.12% for cadmium (Cd). Contaminated sunflower stems were pyrolyzed at different temperature. The biochar produced at 300 °C was extracted in a two-step process (acid-extraction from biochar and metals precipitation in alkaline condition). At pH = 1, 65.67% of the Cd and much potassium (K) were extracted. After acid-extraction, adjust the pH of filtrate to 10, metals were precipitated and then separated from the K-enriched solution. Therefore, pyrolysis can process contaminated residues, and the biochar extracts can be reutilized as fertilizer to off-site crop production. Thus, an oil crop-rotation system, in addition to creating economic benefits, can be used by local farmers in contaminated soils.
               
Click one of the above tabs to view related content.