LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Uptake and elimination of butyl- and phenyltins by Ceratophyllum demersum L.

Photo from archive.org

The widespread occurrence and distribution of organotin compounds (OTCs) in both marine and freshwater ecosystems has aroused considerable concerns in most countries worldwide. In this work, individual kinetics of the… Click to show full abstract

The widespread occurrence and distribution of organotin compounds (OTCs) in both marine and freshwater ecosystems has aroused considerable concerns in most countries worldwide. In this work, individual kinetics of the elimination of three butyltins and three phenyltins from C. demersum L. were systematically studied for over 240 h in clean water after a 48h period of accumulation. All OTCs were rapidly metabolized to nontoxic inorganic tin by C. demersum L. through stepwise debutylation or dephenylation. In addition to inorganic tin, monobutyltin (MBT) and monophenyltin (MPT) were the primary degradation products of tributyltin (TBT) and triphenyltin (TPT), with small amounts of dibutyltin (DBT) and diphenyltin (DPT), respectively, also being present. The estimated half-life of TPT (240 h) in C. demersum L. was longer than that of TBT (100 h), although the TPT was less hydrophobic. The corresponding degradation mechanisms may be attributed to a cascade of enzymatic reactions of CYP450 enzymes in C. demersum L. The pH played an important role in both plant growth and TBT degradation. Although pH 8.9 was more suitable for C. demersum L. growth, it uptook and metabolized more TBT at pH 5.0, which may be because the cationic species TBT+ (at pH 5.0) was metabolized more easily than the neutral hydroxide species TBTOH (at pH 8.9). C. demersum L. may thus be the plant with the most potential for the remediation of OTC-contaminated freshwater environments.

Keywords: phenyltins ceratophyllum; demersum; ceratophyllum demersum; butyl phenyltins; elimination butyl; uptake elimination

Journal Title: Chemosphere
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.