LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Uranium (234U, 238U) and thorium (230Th, 232Th) in mushrooms of genus Leccinum and Leccinellum and the potential effective ionizing radiation dose assessment for human.

Photo by potato_potato_potato from unsplash

Evaluated has been bioconcentration potential by fungi and risk to human consumers from exposure to natural long-lived radioactive uranium (234U, 238U) and thorium (230Th, 232Th) sequestered in stems, caps and… Click to show full abstract

Evaluated has been bioconcentration potential by fungi and risk to human consumers from exposure to natural long-lived radioactive uranium (234U, 238U) and thorium (230Th, 232Th) sequestered in stems, caps and the whole fruiting bodies by mushrooms of the genus Leccinum and Leccinellum. Edible species in the study were collected from boreal forests in the northern regions of Poland and investigated: red-capped scaber (Leccinum aurantiacum), orange oak bolete (Leccinum aurantiacum var. quercinum), foxy bolete (Leccinum vulpinum), slate bolete (Leccinum aurantiacum var. duriusculum) and hazel bolete (Leccinellum pseudoscabrum). The study showed the species accumulated uranium (234U, 238U) and thorium (230Th, 232Th) form soil to some degree but the calculated values of the bioconcentration factor were below 1. The evaluation showed that Leccinum and Leccinellum mushrooms can contribute to annual effective radiation dose maximally at about 0.9 μSv. Hence, consumption of these mushrooms might increase the annual effective ionizing radiation dose received by a human, while the exposure is considered low from the toxicological point of view even if eaten at elevated amounts.

Keywords: leccinum; leccinellum; 234u 238u; 238u thorium; thorium 230th; uranium 234u

Journal Title: Chemosphere
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.