LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A facile one-step synthesized epsilon-MnO2 nanoflowers for effective removal of lead ions from wastewater.

Photo from wikipedia

The increasing contamination of lead ions (Pb(II)) in groundwater has become a serious environmental issue, which provides the impetus for intense research on Pb(II) removal. ε-MnO2 nanoflowers were successfully fabricated… Click to show full abstract

The increasing contamination of lead ions (Pb(II)) in groundwater has become a serious environmental issue, which provides the impetus for intense research on Pb(II) removal. ε-MnO2 nanoflowers were successfully fabricated through a simple decomposition reaction. And the obtained ε-MnO2 nanoflowers were employed to remove Pb(II) from water. The detailed microstructure and surface properties of ε-MnO2 were systematically characterized. The results indicate that the pure ε-MnO2 phase was obtained and the specific surface area is 96.33 m2 g-1. Batch adsorption experiments of Pb(II) were carried out, and the ε-MnO2 nanoflowers exhibited outstanding adsorption performance. The maximum adsorption capacity for Pb(II) and Cd(II) achieved to 239.7 mg g-1 and 73.6 mg g-1 at the dosage of 0.2 g L-1. Besides, the prepared ε-MnO2 nanoflowers show much higher removal efficiency toward Pb(II) compared with commercial MnO2. The XRD results reveal the stability of ε-MnO2 nanoflowers, and the XPS results suggest that both the electrostatic interaction and structural tunnels are responsible for the removal mechanisms of Pb(II). This work finds a facile method to synthesize ε-MnO2 nanoflowers, showing great potential for Pb(II) removal.

Keywords: facile one; lead ions; one step; mno2 nanoflowers; mno2

Journal Title: Chemosphere
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.