LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effect of calcium dihydrogen phosphate addition on carbon retention and stability of biochars derived from cellulose, hemicellulose, and lignin.

Photo by armandoascorve from unsplash

Pyrolysis of biomass with phosphate compound is a promising method to improve biochar characteristics. However, how phosphate compound affects the three components of biomass during the biochar formation is still… Click to show full abstract

Pyrolysis of biomass with phosphate compound is a promising method to improve biochar characteristics. However, how phosphate compound affects the three components of biomass during the biochar formation is still unclear. In this study, a typical phosphate compound, calcium dihydrogen phosphate (Ca(H2PO4)2), was premixed with cellulose, hemicellulose, and lignin reagent, at the ratio of 20% (w/w) for biochar production through pyrolysis, aiming to investigate the effects of Ca(H2PO4)2 addition on biochar formation. Results show that, with Ca(H2PO4)2 additions, carbon retention of biochars from cellulose (MCBC) and hemicellulose (MHBC) increased by 63.4% and 48.3%, respectively, but that of lignin (MLBC) decreased by 6.7% due to the reactions between lignin and Ca(H2PO4)2. Moreover, the stable carbon proportion in the biochar decreased by 10.2% for MCBC, almost unchanged for MHBC, and increased by 6.15% for MLBC based on the potassium dichromate oxidation. During the pyrolysis process, Ca(H2PO4)2 addition fixed more volatile and/or labile carbon in biochar, resulting in greater carbon retention. Declined carbon stability of biochar might be caused by the inhibited formation of aromatic-C, evidenced by the Fourier transform infrared spectroscopy analysis. This study highlights the importance and potential mechanisms of calcium dihydrogen phosphate influencing the carbon retention and stability of biochar derived from three biomass components.

Keywords: carbon retention; carbon; dihydrogen phosphate; biochar; calcium dihydrogen

Journal Title: Chemosphere
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.