Encapsulation metal oxides into carbon frameworks is a good strategy to synthesis high activity and stable catalyst. Here, Fe3O4 nanoparticles (∼20 nm) were firmly encapsulated in the graphene aerogels by a… Click to show full abstract
Encapsulation metal oxides into carbon frameworks is a good strategy to synthesis high activity and stable catalyst. Here, Fe3O4 nanoparticles (∼20 nm) were firmly encapsulated in the graphene aerogels by a simple and environmentally friendly method (Fe3O4/GAs), for activating persulfate (PS) to degrade malachite green (MG) under simulated sunlight. A strong electron conduction was generated between the Fe3O4 nanoparticles and graphene sheets to improve the cycle of Fe(II)/Fe(III), and the MG degradation over a wide pH rage (3-9) was enhanced greatly. The MG molecule was decomposed into 12 intermediates and two possible pathways was proposed. More importantly, toxicity test and Toxicity Estimation Software (T.E.S.T.) proved that the toxicity of MG can be effectively controlled by Fe3O4/GAs + PS + light system. In addition to the high catalytic activity, Fe3O4/GAs exhibited a good stability and reusability due to the strong interaction between Fe3O4 and graphene layers. The degradation efficiency remained above 87% after six cycles, and the leaching amount of iron in each cycle was less than 0.125 wt%. SO4•- was the dominate radical for MG degradation and the heterogeneous Fenton-like reaction was mainly performed on the surface of catalyst. This work lay a foundation for applying Fe3O4/GAs as a highly efficient, stable and reusable heterogeneous Fenton-like catalyst for future applications.
               
Click one of the above tabs to view related content.