LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Plasma-catalytic degradation of ciprofloxacin in aqueous solution over different MnO2 nanocrystals in a dielectric barrier discharge system.

Photo by averey from unsplash

The α-MnO2, β-MnO2 and γ-MnO2 samples were prepared by the hydrothermal method and were used for the degradation of ciprofloxacin (CIP) wastewater in a combined DBD-catalytic process. The physical and… Click to show full abstract

The α-MnO2, β-MnO2 and γ-MnO2 samples were prepared by the hydrothermal method and were used for the degradation of ciprofloxacin (CIP) wastewater in a combined DBD-catalytic process. The physical and chemical properties of the samples were systematically studied by several analytical techniques including BET, XRD, SEM, HRTEM, XPS, and H2-TPR. The combination of DBD with α-MnO2 showed the highest CIP degradation efficiency, and the efficiency could reach 93.1% after 50 min, which was 10.8% and 18.1% higher, respectively, than those of β-MnO2 and γ-MnO2 catalysts in the plasma-catalytic system. According to the model of response surface methodology, the contribution of key experimental parameters on the CIP degradation decreased in the order: peak voltage > air flow rate > initial concentration > initial pH. The optimum operating parameters were peak voltage 17 kV, air flow rate 2.5 L min-1, an initial concentration 5 mg L-1 and an initial pH 6.9. The quenching experiments of active species showed that OH and O2- were critical to the CIP degradation. The generated O3 might be adsorbed by the α-MnO2 catalyst and resulted in more OH generation. The intermediate products of CIP degradation in DBD+α-MnO2 system were analyzed by LC-MS, and three possible degradation pathways were proposed. This research provides an insight into the use of the crystallographic structures in discharge plasma system for antibiotics in water.

Keywords: degradation; system; degradation ciprofloxacin; plasma catalytic; cip degradation; mno2

Journal Title: Chemosphere
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.