LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Transcriptomic analysis reveals common pathways and biomarkers associated with oxidative damage caused by mitochondrial toxicants in Chironomus dilutus.

Photo from archive.org

A variety of chemicals are capable of provoking mitochondrial dysfunction and thereby contribute to metabolic disorder related effects in wildlife and human. For better identifying new mitochondrial toxicants and assessing… Click to show full abstract

A variety of chemicals are capable of provoking mitochondrial dysfunction and thereby contribute to metabolic disorder related effects in wildlife and human. For better identifying new mitochondrial toxicants and assessing mitochondria-related risk, an in-depth understanding of toxic mechanisms and biomarkers should be attained. In the current study, a representative mitotoxicant, azoxystrobin, was assessed for lethal and sublethal outcomes in Chironomus dilutus after 96-h exposure and the toxic mechanism was explored. Global transcriptomic profiles by RNA-sequencing revealed that ampk, acc1, atp2a, gsk3b, pi3k, fak, atr, chk1, and map3k5 were the key genes which involved in the toxic action of azoxystrobin and could serve as potential molecular biomarkers. A major network of common toxicity pathways was then developed for mitotoxicants towards aquatic insects. In particular, calcium ion-PI3K/AKT and cAMP-AMPK-lethality pathways were demonstrated, in addition to the well-known mitochondrial electron transfer-oxidative damage-apoptosis pathway. These analyses could help developing adverse outcome pathways that integrate toxicological information at various levels and support more effective risk assessment and management of mitotoxicants.

Keywords: analysis reveals; oxidative damage; transcriptomic analysis; mitochondrial toxicants; chironomus dilutus

Journal Title: Chemosphere
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.