LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Assessment of mobility and environmental risks associated with copper, manganese and zinc in soils of a dumping site around a Ramsar site.

Photo from wikipedia

This study reports the environmental fate and ecological hazard of the three heavy metals (HMs), viz. copper (Cu), manganese (Mn) and zinc (Zn) in soil influenced by municipal solid waste… Click to show full abstract

This study reports the environmental fate and ecological hazard of the three heavy metals (HMs), viz. copper (Cu), manganese (Mn) and zinc (Zn) in soil influenced by municipal solid waste (MSW) dumping. The experimental site is situated in the vicinity of Deepor Beel, a Ramsar site located in Guwahati, India. This study assessed (i) the distribution pattern of Cu, Mn and Zn in six geochemical fractionations; (ii) the mobility, bioavailability and toxicity of Cu, Mn and Zn based on eight contamination and ecological indices, and (iii) the impact of Cu, Mn and Zn on soil quality. Altogether, 18 soil samples were collected and analysed from the study site using stratified random sampling. Pollution indices and multivariate statistics were applied on the data to identify the level and source of analysed HMs. Sequential extraction has revealed that the binding strength of Cu, Mn and Zn had a uniform trend. Mobility and potential bioavailability of studied HMs were in the order Mn > Cu > Zn. Analysed HMs were dominantly associated with non-bioavailable fractions. The observed low values of various contamination factors indicated the lesser contamination load posed by these metals. Conversely, their high enrichment factor and geo-accumulation index values indicated the sources of these metals were anthropogenic. Overall, the pollution and ecological indices registered lower contamination. Yet, it would be prudent to adopt efficient MSW management strategies for eliminating any future risk emanating out of this dumping site and posing threat to nearby Deepor Beel and its associated flora and fauna.

Keywords: mobility; copper manganese; site; manganese zinc; dumping site; ramsar site

Journal Title: Chemosphere
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.