LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Heavy metal capture from the suspended particulate matter by Morus alba and evidence of foliar uptake and translocation of PM associated zinc using radiotracer (65Zn).

Photo by p1mm1 from unsplash

In urban set up, increasing combustion and processing activities have contaminated the air with toxic heavy metals which are generally enriched on atmospheric particulate matter. Vegetation around urban area act… Click to show full abstract

In urban set up, increasing combustion and processing activities have contaminated the air with toxic heavy metals which are generally enriched on atmospheric particulate matter. Vegetation around urban area act as a sink where such metal enriched particles generally deposit on the foliar surfaces, however, role of vegetation in uptake of metals adhered on the atmospheric particulate matter is yet not explored properly and is important to study to evaluate their role as bio-remediator. The undertaken work examines the foliar surface of Morus alba for its potential to deposit and accumulate atmospheric heavy metals. Further, to understand foliar uptake mechanism and translocation of atmospheric metal enriched on particulate matter a simulated experiment was conducted by labeling the known particle size (45 μm and 120 μm) with radio labeled 65Zn, applied on the tagged leaf with two particle loads, 25 mg and 50 mg. The study showed that owing to its rough foliar surface with trichomes and grooves, Morus alba efficiently trap heavy metal enriched particles and was capable of accumulating metals from particulate matter into different plant parts. It was recorded that 65Zn adhered on different size particles was taken up by tagged leaf of mulberry and majorly translocated to the lower stem and roots. It was also inferred from the study that both particle size and particle load significantly affect the foliar uptake and translocation of atmospheric heavy metal. The study focuses on the fact that urban avenue trees are capable of taking up atmospheric heavy metals and can play a crucial role in improving air quality.

Keywords: foliar uptake; matter; morus alba; heavy metal; particulate matter

Journal Title: Chemosphere
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.