In order to obtain higher agricultural yields, the use of chemical substances has been increased to prevent the proliferation of pests, as well as ensuring durability in the storage of… Click to show full abstract
In order to obtain higher agricultural yields, the use of chemical substances has been increased to prevent the proliferation of pests, as well as ensuring durability in the storage of the food produced. Such substances are known as pesticides that may well present risks to human health and the environment. In the presence of metal ions, these substances can interact forming new species with different characteristics. Carbendazim (MBC) is an example of a harmful pesticide, which has atoms of nitrogen and oxygen in its structure that can form complexes with metal ions. Thus, in this work has studied the interaction between the copper (II) metal ion and carbendazim and its formation in natural water. The Cu-MBC complex showed a reduction peak of 0.007 V and an oxidation peak of 0.500 V, with characteristics of a quasi-reversible process under a glassy carbon electrode. By anodic stripping voltammetry, a different behavior was observed in the interaction of copper and carbendazim in ultrapure water and Billings dam water; however, it was possible to observe the complex in both samples. Carbendazim in the presence of the metal shows lower oxidation potential value, indicating the influence of the metal on the electrochemical response of the pesticide.
               
Click one of the above tabs to view related content.